
©jmg2009

Calcul prédictif de la vitesse limite de chute d'une bille lâchée dans un tube rempli de glycérine. Evaluation de l'importance de la température ambiante sur la valeur numérique trouvée.

Données numériques :

$$\begin{array}{ll} d & = 0.004 \quad [m] \quad \textit{diamètre de la bille}. \\ \rho_{acier} = 7550 \quad [kg/m^3] \\ \rho_{glyc} = 1240 \quad [kg/m^3], \quad \gamma = 5 \cdot 10^{-4} \, [1/^{\circ}C] \\ \eta & = 1.49 \quad [\tilde{Pa.s}] \, \grave{a} \, 20 \, [^{\circ}C] \quad \textit{voir graphe avec la température} \end{array}$$

• Représenter schématiquement les forces qui agissent sur la bille pour un écoulement laminaire et donner la condition sur les forces pour obtenir une vitesse constante.

Condition MRU:
$$\vec{F}_R = 0 \rightarrow selon \ l' \ axe \ x$$
: $F_p - F_f - F_A = 0$

 Remplacer chaque force par son expression littérale et établir l'expression littérale de la vitesse limite de la bille en fonction des données fournies :

$$\begin{split} F_p - F_f - F_A &= 0 \quad \rightarrow \quad m \cdot g - 6\pi \cdot r \cdot \eta \cdot v_{\lim} - \rho_{gl} \cdot g \cdot V = 0 \\ \rightarrow \frac{4}{3}\pi \cdot r^3 \cdot \rho_a \cdot g - 6\pi \cdot r \cdot \eta \cdot v_{\lim} - \rho_{gl} \cdot g \cdot \frac{4}{3}\pi \cdot r^3 = 0 \\ \rightarrow \frac{4}{3}\pi \cdot r^3 \cdot (\rho_a - \rho_{gl}) \cdot g = 6\pi \cdot r \cdot \eta \cdot v_{\lim} \\ \rightarrow v_{\lim} &= \frac{2 \cdot (\rho_a - \rho_{gl}) \cdot g \cdot r^2}{9 \cdot \eta} \quad \rightarrow \quad v_{\lim} = \frac{(\rho_a - \rho_{gl}) \cdot g \cdot d^2}{18 \cdot \eta} \end{split}$$

• Calculer la valeur numérique de la vitesse limite dans les conditions de température de l'expérience, hypothèse à 20 [°C]) :

$$v_{\text{lim}} = \frac{(\rho_a - \rho_{gl}) \cdot g \cdot d^2}{18 \cdot \eta} = \frac{(7550 - 1240) \cdot 9.81 \cdot 0.004^2}{18 \cdot 1.49} = 3.7 \cdot 10^{-2} \text{ [m/s]}$$

• Comparer votre résultat avec la mesure expérimentale directe. Conclusion.

$$v_{\text{exp}} = \frac{\Delta x}{\Delta t} = \frac{0.285}{8.65} = 3.3 \cdot 10^{-2} \text{ [m/s]} \quad condition de l'expérience } T = 19 \text{ [°C]}$$

$$v_{\text{lim}} = \frac{(\rho_a - \rho_{gl}) \cdot g \cdot d^2}{18 \cdot \eta} = \frac{(7550 - 1240) \cdot 9.81 \cdot 0.004^2}{18 \cdot 1.66} = 3.3 \cdot 10^{-2} \text{ [m/s]} \quad \text{à T} = 19 \text{ [°C]}$$